PN

A \

a
s
\

#
JA \
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

ya \

A
A

/A \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TRANSACTIONS

PHILOSOPHICAL THE ROYAL
OF SOCIETY

Migration from Plastic Packages into their
Contents. |. The role of Mathematical Models

J. A. Lum Wan, P. C. Chatwin and L. L. Katan

Phil. Trans. R. Soc. Lond. A 1995 350, 379-406
doi: 10.1098/rsta.1995.0021

i i i Receive free email alerts when new articles cite this article - sign up in
Email alerti ng service the box at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to:
http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1995 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;350/1694/379&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/350/1694/379.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

Migration from plastic packages into their
contents. I. The role of mathematical models

By J.A. Lum Wan?!, P. C. Cuarwin? anDp L. L. KaTaN?
129 Canberra Street, Brunswick, Victoria 3056, Australia

% Applied Mathematics Section, School of Mathematics and Statistics,

University of Sheffield, Sheffield S3 7RH, U.K.

. \
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

planned and conducted in teams involving mathematicians.

3[.F.P.S. Ltd, P.O. Box 410, Kingston-upon-Thames, Surrey KT1 4YE, U.K.

Materials contained in plastic packages can transfer (migrate) into the contents. In
some circumstances, such as packages of food, drink or medicine, the consequences
of this migration can be unpleasant or even harmful. Many countries, and the
European Community, have adopted legal regulations designed to limit the amount
of migration. It is shown, partly by discussing one example in some detail, that
certain quantitative criteria in such regulations are unsatisfactory. The reasons
include (@) improper recognition of the importance of package geometry, (b) invalid
assumptions about a correspondence between concentrations in the contents and
mass transfer per unit area of the package—contents interface and (c) failure to
account, in an adequate manner, for the inevitable variability between nominally
identical package systems. The principal theme of the paper is that these faults could
have been, and can be, substantially ameliorated by proper use of mathematical
models. Common shortcomings in the previous (but very limited) use of mathematics
are exposed partly by detailed examination of a recent research paper. The paper
discusses the requirements of a successful model and considers the simplest type,
namely diffusion equations with diffusion coefficients that are independent of the
concentrations of the migrant in either the plastic or the contents. Particular
solutions are chosen to illustrate faults in existing legislation and practice, and
because they are thought to be good candidates for testing against data. It is argued
that future experiments would be more successful and more useful if they were

1. Introduction

(@) Background
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Plastics used in packaging usually contain substances that may migrate into the
package contents. Examples are residual monomers or reagents, additives such as
antioxidants or plasticizers, colouring materials, and reaction products formed in
manufacture or work-up. Some migrants have undesirable effects if they are present
in the contents in sufficient quantities. In food (including drink) and medicines, such
effects range from unpleasant, but harmless, taste or smell (e.g. styrene in orange
juice or coleslaw) to toxicity if potentially dangerous substances, such as vinyl
chloride monomer (VCM) or heavy metals, migrate in sufficient quantities. A famous
example of the latter arose when airlines used to serve spirits in miniature bottles
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In view of the enormous and continuing growth in the use of plastic packaging for
food, regulatory authorities have inevitably had to pay increasing attention to
migration. Many nations now have regulations and the Commission of the European
Communities (CEC 1990) has adopted a Directive ‘relating to plastics materials and
articles intended to come into contact with foodstuffs’, having earlier adopted other
Directives, such as 78/142/EEC dealing specifically with VCM. These regulations
and Directives impose legal duties on both suppliers and governmental authorities;
in particular the latter are charged with surveillance and enforcement.

Unfortunately the scientific basis of existing regulations and Directives is
inadequate in some important respects. The main purposes of the present paper are:

(i) to expose these inadequacies;

(ii) to demonstrate that they can be ameliorated by mathematical modelling;

(iii) to argue for a multidisciplinary research programme whose adoption would
lead to scientifically sounder regulations and, hence, enhanced consumer safety. A
largely non-technical summary of some of the themes developed here is given by
Chatwin & Katan (1989).

Later papers will deal with another more general mathematical model and its
comparison with data sets.

In this paper the word ‘food’ will be used to denote both solid and liquid food,
including drinks. While the work was motivated by applications to food packaging,
and all the examples will refer to this area, it is clear that much of it applies whatever
the package contents.

(b) Scientific basis of existing legislation

The scientific research on migration that has underpinned existing regulations and
Directives has been almost entirely in the field of analytical chemistry. (No account
need be taken here of related research areas, such as toxicology and estimation of
consumer exposure, since these are concerned not with the phenomenon of migration
per se but with its effects.) Thus each available migration data set is specific to:

(i) the materials used — plastic, migrant(s), food (or food simulant);

(ii) the geometry of the system tested — size, shape;

(iii) experimental conditions such as temperature.

These limitations are of course inevitable. But the experiments ought, ideally, to
have formed parts of concerted, multidisciplinary, research programmes designed to
enable quantitative assessments of migration to be made across the whole vast range
of circumstances relevant to consumer safety. Because of factors such as inherent
variability in food and plastic structure, and ignorance of the exact temperature
history of any one package since containment, no quantitative assessment of
migration can be completely accurate even for a system whose nominal twin had
been specifically examined in a laboratory test. But such situations are widespread,
even normal, in our world and a key scientific skill is to provide best possible and
scientifically well founded estimates under these circumstances. All such estimates
will make full use of available information, especially experimental results, on
relevant specific cases. Sometimes, of course, lack of information will mean that ‘best
possible’ is only correct to an order of magnitude, or worse.

But, unfortunately, there is little sign that those responsible for advising on
migration legislation have recognized the desirability, indeed necessity, of involving
experts in fields other than analytical chemistry in their research programmes. (This
is surprising not only for the positive reasons summarized above but also because of
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the manifest impossibility of conducting a specific test for each package system
available to the consumer.)

It is important to prove this contention, namely that the scientific base of
migration research has been too narrow, till now at least. Evidence is easy to find,
and two examples are discussed in detail in the two appendices. Appendix A
demonstrates that an existing Directive does not provide the protection to the
consumer that is its intention. A major reason is that package size and shape are
totally ignored; additionally the Directive makes some implicit, but erroneous,
assumptions about basic science. Appendix B points out some of the serious errors
made in a recent research paper, errors of both understanding and technique in
simple physics and mathematics. Although the particular paper discussed is perhaps
an extreme example, all the types of error listed have appeared many times in the
research literature.

(c) Use of mathematics in previous migration research

The potential of mathematics to quantify, generalize and predict has hardly been
exploited by migration research workers. There are numerous examples in which a
mathematical formula for the concentration of a migrant, or its total transferred
mass, is quoted in an otherwise experimental paper and then is not referred to again.
On some other occasions, attempts made to compare such formulae with the
experimental results are scientifically invalid, often because the quoted formula does
not apply for the geometry of the experiment.

This lack of recognition of the potentially crucial importance of geometry is a
common fault in papers on migration, but there are others that are arguably as
serious.

Little use is made of non-dimensional plots to collapse data and thereby most
efficiently to facilitate intercomparisons of data sets from different experiments and
laboratories, and with different materials. A consequence is that claims are often
made, on the basis of graphs of, for example, dimensional concentration against
dimensional time, that two (or more) systems behave differently when appropriate
dimensionless plots might well demonstrate the opposite, i.e. that they are controlled
by the same physics. Unfortunately, however, key information is often omitted from
such papers so that the data given in them cannot be replotted in dimensionless form.

This criticism illustrates a more general fault. Most experiments on migration do
not involve chemical change so that what is observed is essentially a result of physics.
Accordingly, more emphasis on physics would usually be in order.

Finally it does not appear to be generally understood that a mathematical formula
expressing concentration as a function of position and time does not constitute an
effective mathematical model since, of course, such a formula can be valid only for
one geometry and only for one set of initial and boundary conditions. Since the
formula concerned is invariably an elementary solution of a partial differential
equation, the effective mathematical model would then be this equation together
with the appropriate boundary and initial conditions. Numerical predictions for
realistically shaped food package systems would require the use of numerical analysis
and computers, nowadays a standard task (but not necessarily a trivial one).

The points above are discussed at greater length in Chatwin & Katan (1989). Also,
of course, there are exceptions to the general criticisms and some will be referred to
later.
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(d) Plan of the paper

The rest of this paper discusses the structure, and some details, of mathematical
models that seem promising candidates for further investigation. A simple result
giving an absolute maximum limit on the mass of migrant that can be present in food
is discussed in § 2, while models giving more detailed predictions are considered in §3.

However, as emphasized elsewhere (Chatwin & Katan 1987, pp. 3/1/56-3/3/56;
1989), mathematical models of migration — indeed of any phenomenon — have little
or no practical value unless they have been tested against data and, where necessary,
refined or changed. Unfortunately, as explained in §1¢ above and illustrated by
appendix B, very few available data sets have the detail or, sometimes, the quality
required for this task. Therefore the main aim of §3 is to provide a reference and,
perhaps, a guideline for testing and validation by future experimenters, working in
collaboration with mathematicians. However, in a later paper (Lum Wan et al. 1996)
one data set will be discussed in depth that is an exception to those criticized
immediately above, and shows that it agrees well with the predictions of a
mathematical model.

2. The maximum possible migrant concentration in the food

In this paper, italic capital letters (e.g. M, C, V) denote quantities that refer to the
food (mass of migrant, migrant concentration, volume respectively) and lower case
letters (e.g. m, ¢, v) denote the corresponding quantities for the plastic package. In
particular, note that v is the volume of plastic forming the package, whereas V is the
capacity of the package when full. (When necessary, concentrations will be expressed
as mass/volume — kg m™ in ST units — but conversions to a system using mass ratio
can easily be made if needed.)

Suppose that, at containment, the mass of migrant in the plastic package is m,. To
obtain a ‘fail safe’ assessment, it is clearly legitimate to ignore any loss of migrant
to the environment outside the food package system (and it is difficult to estimate
such losses when they are caused, for example, by handling). It will also be assumed
here that the system is not affected by chemical or biological change.

Whatever its precise mechanism, mass transfer of migrant from the package to the
food would result (if the food were not consumed first) in an eventual equilibrium
provided that conditions like temperature and pressure were ultimately steady. Let
the masses of migrant in the food and package at this equilibrium be M and m,
respectively. By mass conservation,

Moo=m0_moo‘ (1)

Normally, at equilibrium, the concentrations €', and ¢, of the migrant in the food
and plastic respectively will be uniform (i.e. independent of position). This will
always be true, for example when the mass transfer mechanism is a diffusion process,
even if the diffusion coefficient depends on concentration. Thus, from (1),

Coo = (CO_Coo)v/V’ (2)

based on the assumption (see §3) that any change in volume of either food or plastic
due, for example, to penetration of the plastic by the food can be neglected.
It follows from (2) that
C,<cyv/V. (3)

Phil. Trans. R. Soc. Lond. A (1995)
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Hence it can be guaranteed that the final concentration of migrant in the food will
be less than any prescribed (e.g. toxicologically hazardous) limit, C. say, by choosing
one (or more) of ¢,, » and V so that

cov/V < Cr. 4)

This result is not new and refinements involving partition coefficients and solubility
can be introduced. (Note, for example, equation (14) below.) See Garlanda & Masoero
(1966), Katan (1979), Sanchez et al. (1980) and Chatwin & Katan (1989) where many
details, including numerical examples, are discussed. These refinements result in a
lowering of the maximum possible value of C, given by (3), but at the cost of
introducing physical constants of usually unknown values.

An absolute insistence that (4) must be satisfied would generate technological or
economic problems that are deemed to be unacceptable in many cases. It may also
result in food packages that are not attractive to the consumer, a drawback that
could be substantially alleviated by more public information. However, even with
these caveats, there is little doubt that the degree of safety could be improved by
adopting regulations that take more account of (4) than is presently so. This would
also have the advantage of tending to reduce the mass of plastic needed for a given
mass of food.

3. Some types of mathematical model
(@) Deterministic or stochastic?

With a few exceptions (e.g. some liquid foods), foodstuffs sold commercially do not
have spatially uniform (homogeneous) structures. Moreover, the degree of non-
uniformity (heterogeneity) within any one item of food (e.g. a piece of cheese or meat)
is often large and unpredictable as far as factors like location, spatial extent and
magnitude are concerned; different samples of any single item of most foods will
differ from one another in a random manner. Randomness is also inevitable in the
structure of the plastic packages (but usually to a significantly smaller extent) and
in the geometry (e.g. air pockets) of the interface between the food and the plastic.
There are other factors that cause the quantity of migration in any one food package
system to be unpredictable; one important example is its temperature history since
containment.

The effects on migration of this inherent randomness (variability) can be
quantified only by conducting repeat experiments with random samples (of e.g. 20
or more nominally identical packages each containing 0.25 kg of Cheshire cheese). On
grounds of cost, it is perhaps superficially understandable why few such investi-
gations have been undertaken. But the quantitative result of a single migration
test on a single food package system can have little meaning; it may not be close to
the statistical mean for all such packages and may even be an outlier (Barnett &
Lewis 1984).

What little experimental evidence there is amply confirms that this inherent
variability has substantial consequences for migration assessment. Schwope et al.
(1987) note that ‘satisfactory replication of results could not be achieved in migration
measurements of BHT from LDPE into water at 49 °C’ and ‘the results show a
disconcerting scatter’. An estimate by eye from figure 4 of their paper shows that
after about 110 h the maximum mass of BHT in water over 15-20 repeat
experiments is about three times higher than the minimum. Moreover, it is important
to observe that these experiments must substantially underestimate real life
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variability because (a) they were done under closely controlled laboratory conditions,
including temperature, and (b) the ‘food’ was water so that the random structure of
most real foods was not a factor.

The most substantial study of variability was organized by the EC Joint Research
Centre at Petten in the Netherlands and is reported by Haesen ef al. (1984). A total
of nine laboratories, from various member countries of the EC and from Switzerland,
took part in a project with four phases, of which only the first two need be considered
here.

Migration was not investigated in the first phase, which dealt only with the
reliability of the technique used to measure migrant concentrations. Each of eight
laboratories used high performance liquid chromatography (HPLC) to analyse each of
a set of 12 nominally identical samples centrally prepared at Petten. The 12 samples
involved two different food simulants (water and HB 307, a synthetic fat), two
plastic additives (Irganox 1010 and DHBP) and three different concentrations in the
parts per million range. The most striking feature of the results was that in all cases
the average measured concentration was substantially below the actual (i.e. nominal)
concentration by amounts between 10 % and 50 % ; this feature, clear from table 1
of Haesen et al. (1984), was not commented on. From the point of view of immediate
concern, there was, additionally, considerable scatter in the results with standard
deviations ranging from 11-16% for DHBP in HB307 to greater than 70% for
Irganox 1010 in HB307. Not unreasonably, it was concluded that ‘The considerable
scatter observed showed a major problem ...another identification method had to be
found to obtain satisfactory repeatability and reproducibility’. (In fact, the
strongest reason for rejecting the method is not the scatter but the large and
systematic shortfall in the measured concentrations.) The scatter could be due at
least in part to real differences between the nominally identical samples. There is a
lot of other evidence — for example the data discussed in appendix B of the present
paper — to suggest that the variability between nominally identical samples can
produce scatter of the observed order of magnitude.

The second phase was principally concerned with examining the repeatability
(experiments within a single laboratory) and reproducibility (experiments in different
laboratories) of migration data. The measurement problems in the first phase were
stated to be eliminated by the use of 1*C labelled additives; certainly the results were
no longer consistently low. The central laboratory at Petten distributed samples of
HDPE, each sample containing one of the two additives used in phase one, to the
participating laboratories. Migration tests, each for 10 days at 40 °C, were conducted
in Petri dishes with three test liquids: 90:10 v/v water—ethanol; HB307; olive oil.
Samples of the resulting liquids were in each case analysed both at the laboratory
conducting the test and at Petten. There were some problems with ethanol
evaporation and about 15% of the results were rejected as outliers. (The proper
statistical treatment of outliers is a controversial topic (Barnett & Lewis 1984);
accordingly it would have been useful to state the precise criteria used for defining
an outlier.) The standard deviations for repeatability ranged from 2 to 9% and this
was judged to be acceptable. However the standard deviations for reproducibility
were generally much larger, ranging from 5 to 47 % with an average of about 28 %.

It is now clear that even in controlled laboratory experiments (and a fortiori under
real life conditions) migration ought to be regarded as a statistical phenomenon or,
in technical terms, a stochastic process. Ideally, therefore, mathematical models of
migration should involve a substantial statistical component. In particular a model
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should include an assessment of the degree of uncertainty associated with any one
numerical estimate of migration, for example by including a procedure for estimating
its standard deviation. Note that such a standard deviation is a net effect of all the
factors that contribute to inherent variability, and these can be quantitatively
investigated by well designed experimental programmes.

Stochastic models of the type envisaged are being increasingly developed in many
fields because it is now recognized that they, and not the traditional deterministic
models, correspond to reality; two examples are the assessment of risk consequent
upon the accidental release of dangerous gases into the atmosphere, and the
monitoring of urban air quality (Chatwin & Sullivan 1990; Chatwin 1991).

However, all the mathematical models used so far in migration research have been
deterministic. This is realistic only insofar as the data sets available are so limited
that they do not allow any stochastic model to be tested; indeed, and as noted
already, they are rarely useful even in conjunction with deterministic models.
Nevertheless, although deterministic models will not ultimately prove satisfactory
for migration into real foods, they can, more positively, be proposed as providing
predictions of the mean (i.e. expected) migration over a population of migration
events or, less ambitiously, as providing estimates of the order of magnitude of the
migration and its dependence on key quantities like time. This is the justification for
considering deterministic models below, but only further experiments can decide
whether this approach is practically acceptable.

(b) Diffusion equation models. Principles

It is good practice to investigate simple deterministic models until there is strong
experimental evidence that their predictions are practically inadequate. In the first
instance only specific migration (i.e. the migration of one migrant) will be considered.

Contrary to what is usual in real life (albeit not in many experiments), but
consistent with the philosophy recommended in the last paragraph of §3a, it will be
supposed that both the food and the plastic are homogeneous and isotropic. (For
packages that are laminates the modelling is valid provided migration occurs only
from the layer in contact with the food. So, either the interface between the first two
layers is impervious to the migrant or the first layer is effectively of infinite thickness,
i.e. the obvious analogues of (7a) or (7b) respectively are true.)

This paper does not consider situations in which chemical or biological changes
occur. Although there is some experimental evidence (Schwope et al. 1987) that
chemical changes are relevant in certain circumstances, this restriction is generally
valid.

When the above conditions hold, migration is a conservative mass transfer
process, and it can be argued quite generally (see, for example, Batchelor 1967,
pp. 28-37) that changes in the migrant concentrations C'= C(x,) (in the food) and
¢ =c¢(x,t) (in the plastic), where the notation is consistent with the convention
introduced at the beginning of §2, and x and ¢ denote position and time respectively,
are described by diffusion equations with diffusivities D and d. Thus

3C/at = V-(DVC), dc/dt = V- (dVe). (5)

The way in which equations (5) have been written allows the possibility that D and
d are not constant. In particular, they may depend on C, ¢ and state variables like
temperature (but not separately on x and ¢ in view of the postulated homogeneity);
see §3d below and Lum Wan et al. (1996). (Equations (5) are referred to as ‘Fick’s
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second law’ by many who write about migration, but this attribution is not normal
in physics, mathematics or engineering. The reason is that the general argument
leading to equations (5) applies also to heat, and Fick in 1855 simply recognized the
applicability to mass transfer of (5), equations for temperature derived by Fourier in
1822 (see Crank 1975, p. 2, p. 4).)

All the mathematical modelling in this paper will be for cases where, before
containment, the migrant is absent from the food and distributed uniformly in the
plastic with concentration c,. The time at which containment (i.e. the formation of
the food package system) occurs is chosen to be t = 0. Consequently the initial
conditions that solutions of (5) must satisfy are:

C(x,0) =0, ¢(x,0)=c,. (6)

The boundary conditions for (5) depend on the circumstances in which migration
takes place. These are controlled to a greater or lesser extent by e.g. the food
manufacturer, the retailer, the consumer or (for laboratory tests) the experimenter.
In general they differ from case to case even with the same materials and same
geometry.

One such condition is needed at the exterior boundary of the package where it is
in contact with air, for example. In most migration experiments (and for most real
life situations if only on the grounds of maximizing consumer safety) it is appropriate
to assume no loss of migrant, i.e.

n'Ve=20 (7Ta)

everywhere on the exterior boundary, where n is the normal vector. It often happens
that (dt): < h for all times ¢ of interest, where & is the plastic thickness. In such cases
the plastic can be assumed to be infinitely thick as far as migration is concerned and
(7a) can be replaced by
c—>¢, as |n-x|—>o0. (7b)
Mass conservation requires that
Dn-VC =dn-Vc (8)

everywhere on the interface between the food and the plastic. To solve (5) a second
condition is required at this interface. Under some conditions, when equilibrium is
approached,

C=ryc 9)
everywhere on the interface, where 7y is the partition coefficient. It will be assumed
in this paper that (9) holds throughout the migration process even though this is not
an equilibrium state. This assumption is discussed and used by Reid et al. (1980) and
by Chatwin & Katan (1987, pp. 3/4/56-3/5/56, 3/14/56-3/16/56), but its
examination by good experiments is overdue. It will further be supposed here that
v is independent of concentration. Reported values of y for aqueous foods and
lyophilic plastics are typically very small (e.g. y & 7 x 107 for plasticizers migrating
from PVC into 3% acetic acid (Till et al. 1982a) and y =~ 7.1 x 1072 for styrene
monomer migrating from polystyrene into 50 % aqueous ethanol (Till et al. 1982b))
but they can be much larger, even exceeding one, when oily foods are involved.

Use of (6)-(9) inclusive obviously requires complete specification of the relevant
system geometry.

In circumstances when the dependence of D and d in (5) on the migrant
concentrations is known (or can be adequately approximated), equations (5)—(9)

Phil. Trans. R. Soc. Lond. A (1995)
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inclusive determine C' and ¢ uniquely as functions of x and . Some particular
examples that illustrate this assertion will be discussed in §3¢, d.

However, because D, d and y are, in general, strongly dependent on temperature
T, the above statement assumes implicitly that the migration occurs under
isothermal conditions. This is true for most laboratory experiments but not in real
life. When conditions are not isothermal, the mathematical model given by equations
(56)—(9) is not complete and therefore not soluble. Equations, like (5), for the variation
of T'throughout the food and package, boundary conditions, and formulae giving the
dependence on it of D, d and y must be added. The resulting model would then be
very complicated (and, in particular, nonlinear) so that its solution even on a
computer would be a major task. From a practical point of view it is doubtful
whether the effort would be justified. Realistically the most useful strategy for
consumer safety would seem to be to assume isothermal conditions with the
temperature equal to the maximum to which the food package is likely to be exposed
for any significant period. Only such isothermal models will be considered in this
paper.

Except for small ¢, useful analytic solutions (i.e. mathematical formulae) of
equations (5)—(9) can be obtained, if at all, only for geometries much simpler than
those used in real food package systems. For realistic geometries, solutions must be
obtained by using computers. It is reasonable to suppose that software packages in
user friendly form will become available to the food packaging industry and to those
responsible for surveillance and for the enforcement of regulations. However the
development of such packages is not justified unless the mathematical model has first
been validated. This validation is of the physics underlying equations (5)—(9), and
does not require the use of complicated geometries. This is the justification for
migration experiments with simple (e.g. one-dimensional) geometries and it follows
that, to be practically useful, the results of such experiments must be compared with
the predictions of mathematical models (which may then be given by mathematical
formulae). The results of experiments in test cells with simple geometries cannot be
extrapolated to realistic geometries, except for small ¢, without use of mathematical
models and computers.

(¢) Diffusion equation models. Some illustrative solutions with constant diffusion
coefficients

(i) Previous work

Migration behaviour was classified by Katan in 1971 (Briston & Katan 1974). His
Class IT systems are those, simply speaking, in which penetration of the plastic
package by the food has an insignificant effect on migration, and it is for these
systems that constant diffusion coefficient models are the obvious first candidates.

Many solutions of equations (5)—(9) when D and d are constant are known. Among
the comprehensive treatments of both methods and analytical solutions are the
books by Carslaw & Jaeger (1959) and Crank (1975). The first paper discussing such
models in the migration context was by Garlanda & Masoero (1966), and significant
contributions were made by an Arthur D. Little/MIT/FDA group in the 1980s (see,
for example: Reid et al. 1980; Schwope et al. 1987).

The remainder of this subsection (§3a) will consider some features of diffusion
equation models with constant diffusion coefficients that are judged to be potentially
important. A critical summary of other work with these models is given by Chatwin
& Katan (1987, especially pp. 3/17/56-3/33/56).
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(il) Small time behaviour

Let h and H be length scales characteristic of the thickness of the plastic and of the
smallest dimensions of the region occupied by the food respectively. For times ¢ such
that

(dtyf<h and (D) < H, (10)

the mass transfer is effectively from a plastic of infinite thickness to a food of infinite
thickness.

There is an old one-dimensional solution of equations (5)—(9), quoted on p. 39 of
Crank (1975), for which the amount of migration at time ¢ is proportional to ¢:. This
has appeared in many papers on migration, but it does not seem to have been realized
(or at least not stated) that the result applies to packages of any shape. Suppose 4
is the area of the interface between the plastic and the food, and let M = M(t) be the
mass of migrant in the food at time ¢. Provided (10) is satisfied, the solution gives

2( 1 1 2 ay 1

where the non-dimensional constant o is defined by
1(dY
===, 12
* Y(D) 12

The mathematical model predicts an approach to an equilibrium as t—-oo0. (Note
that this requires use of (7a), not the approximation to it given by (76), which, as
noted earlier, is valid only when (df)} <h.) As in §2, denote the uniform
concentrations of the migrant in the food and the plastic at equilibrium by C and
¢, respectively. Mass conservation, ensured in the model by equations (5) and (7a),

requires that

(iii) Final equalibrium

cov =0 V4+c, v (13)
Use of (9) then gives
C, = cyyv/(w+7yV). (14)

It is easy to see that the right side of (14) is less than c,(v/V) for all values of 7y, so
that (14) is consistent with (3). Denote the mass of migrant in the food at equilibrium
by M. Since M, = C,V, (14) gives

(7
Mw—<1+ﬂ>coV, (15)
where £ is a second non-dimensional constant defined by
B=yV/v. (16)

Effectively g is the ratio of capacities for migrant of the food and plastic respectively.
For later reference, note that (11) and (16) combine to give

_ﬂ_f_Ng[ 1+ ]A(dt)%_g[a(uﬁ)]A(Dt)%
M, mlyl+a)| V  m| 14a v
provided, still, that (10) holds.
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food plastic
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Figure 1. Definition sketch for one-dimensional geometry.

(iv) The full model solution for one-dimensional geometry

The importance of the results in (ii) and (iii) is due to the fact that they hold in all
geometries.

Clearly it is not possible, for most geometries, to derive formulae from the model
equations that are valid for all {£. Computers must be used to obtain numerical
solutions.

In this expository paper it is appropriate instead to focus upon the physical
content of the mathematical model by considering some simple geometries. In the
first instance, consider the geometry illustrated schematically in figure 1, which
represents essentially all the test cells for which migration data have been reported.
(Note that for two-sided migration it is necessary only to reflect the diagram in the
plane x =k and to make trivial changes in some of the formulae below.) It is
important to note that the interface of area 4 between the plastic and the food at
x = 0 can have any shape. Provided the side walls exert a negligible influence, the
variations of C'and ¢ with y and z can be ignored. The full model equations (5) to (9)
can then be approximated by:

0 _poC 2 _ % W
o o ot 0¥
Cz,0)=0for —H<xz<0; c¢x,0)=c,for0<z<h,

18
0C/dx=0onzx=—H; 0/dx=0o0onx=nh, (18)
DoC/0x =ddc/0x on x = 0,
C=vyconaz=0. /
For this geometry
_ _ _a — (- |
V=AH, v=A4h, p 5 M, <1+ﬂ)coAH, (19)

with use of (15) and (16).

The solution of the system (18) is a routine task; technical details are analogous
to those given for similar systems by Carslaw & Jaeger (1959). The results are most
conveniently expressed in terms of one or other non-dimensional times @ and 6,
defined by

O = Dt/H*; 6 =dt/h* (20)

Phil. Trans. R. Soc. Lond. A (1995)
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Since (H?/D) is a time scale for diffusion in the food, @ is an appropriate non-
dimensional time for this element of the migration process; 6 has an analogous
interpretation in terms of the plastic.

When expressed in terms of @, the exact result for M/M  derived from (18) is:

M * tan®(Q e @
= 1—2a2h(1 n , 21
a, ~TED E T e i ep g, O
where the @, forn =1, 2,..., are the positive roots in ascending order of the equation
tan Q) = —atan(Q/ap). (22a)
The same result, but expressed in terms of 8, is:
M 1 +ﬂ) * tan’q e Ut
—=1-2 > 2 , 21b
P o P (F R (e T .

where the ¢, for n = 1,2,... are the positive roots in ascending order of the equation
tan (aflq) = —atang. (22b)

Note that the infinite series in (21) tends to zero exponentially quickly as 8 —oo (i.e.
ast—o00) so that M /M _ — 1, as it must. It can also be shown quickly that (21) predicts

that M 2 [a(l1+p)
a 1

This is exactly what (17) gives when V = AH — see (19). This agreement between two
independent calculations is an important check on the accuracy of both. Note also
that @ < 1is equivalent to the condition given in (10) that was shown to be necessary
for (17) to be a valid approximation.

The result in (21) was first derived by two of the present authors (Chatwin & Katan
1987, equation (3.37)), and was believed to be new at that time. Its importance is
that it is the most general one-dimensional solution of the mathematical model in
equations (5) to (9) when D and d are constants. (Note that it is straightforward to
derive expressions for ' and ¢ with use of Laplace transforms but these are
substantially lengthier than (21) since €' and ¢ also depend on «.) Since M /M _ in (21)
is a function of the two non-dimensional constants a and 3, as well as of @, it is not
practical to plot it here (and the same applies a fortiori to the concentrations
themselves).

Many important special cases of (21) occur when appropriate limits are taken, and
nearly all of these have been quoted in the migration literature (some on many
occasions).

Reid et al. (1980) point out that in many practical cases the plastic is essentially
infinite as far as migration is concerned. They suggest that this approximation is
appropriate if ‘less than 30-40 %’ of the migrant is extracted. From (19), this case
corresponds to letting #— 0 in such a way that there is no dependence on % so that,
also from (19), M, = yc, AH. The early stages of migration are described by (23) with
f =0, but, for values of @ that are not small, the effects of partitioning and the finite
food volume are felt. The appropriate limit of (23) can be written (Chatwin & Katan
1987, equation (3.45)):

M 20 [ sin2y e~%'@
=12
M, T

Phil. Trans. R. Soc. Lond. A (1995)
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oo

Figure 2. Sketch of M/M,, versus * for well mixed food and infinite plastic (equation (26)). The
dashed straight line is the approximation in equation (27).

Reid et al. (1980) give an alternative (but equal) expression for (24) — their equations
(23) to (25) — and show plots of M /M versus non-dimensional time for many values
of « in their figure 2.

Another approximation that is valid in many practical cases, especially for liquid
foods, is that the migrant diffuses much more rapidly in the food than in the plastic,
i.e. that D > d. This will be termed the ‘well mixed food’ case. (In real life the same
results often occur because real food packages are shaken.) By (12), this corresponds
mathematically to letting a — 0 in such a way that D disappears from all formulae.
The general case is given by Crank (1975, p. 57) and is discussed by Reid et al. (1983);
here it is sufficient to note two particular solutions.

If, additionally, the plastic is effectively infinite, the result for M/M_ can be
obtained by letting a—0 in (24). Since M /M, can depend neither on D nor on k in
this limit, the non-dimensional times @ and 6 can no longer be used. The result is
most neatly expressed in terms of another non-dimensional time 7, where

T =dt/y*H?, (25)
and is (Carslaw & Jaeger 1959, p. 306):

M

T 1 —e7 erfe (1%). (26)

This result is plotted in figure 2, together with the approximation for small time
which is obtained from (17) as:

M 2
MOONX/RT for 7<1. (27)

Figure 2 illustrates, for this simple case, two characteristic properties of the
behaviour of M/M, as a function of time. One is that the approximation for small
¢t given by (17) is good only for a very small fraction of the time needed to achieve
near equilibrium conditions; the error in (27) is already 9% when 7= 0.01. The
second, complementary, point is that the approach to equilibrium is very slow; even
for 7 =100, M /M, is only 0.94.

The final special case to be considered for well mixed food is that when the food
is effectively infinite. This important case is also of historical interest in migration,

Phil. Trans. R. Soc. Lond. A (1995)
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A

(a) MIM,,

L3 5 —— o] o (b)
NS 50 N

&

Figure 3. Effect of shape on migration. (a) Three differently shaped cells all of food capacity 4,H,.
(b) The different behaviour of M/M_ with 73 for the three cells, where 7, = dt/y*H2. H=
H,/10; —— H=H,; —x— H = 10H,,.

since it appears in the pioneering paper by Garlanda & Masoero (1966). The solution
must be independent of both D and H, so that M/M  is a function only of 6, the
non-dimensional time based on diffusion parameters for the plastic (see (20)). The
result is

M 8§ ® o—(2n-1)’r*0/4
Z -2y 28
w, - TR E ey (=5)
and the appropriate form of the approximation (23) is
M 2
— 2 . 2
. Vnﬁ' or <1 (29)

A plot of (28) is given in the paper by Garlanda & Masoero. This case illustrates that
the effect of the partition coefficient y on M /M is low when g is large, essentially
because the concentration €' of migrant is insignificantly different from zero. It will
be noted that y does not appear in (28) or (29) at all since these correspond to the
limit f—o0.

Many other special cases of (21) can be derived, not given here.

(v) Examples of the effect of shape

The results in (iv) can be used to provide quantitative illustrations that the shape
of a food package is important. It was claimed in §1 above, and is partly illustrated
in appendix A, that this point has not yet received the close attention it merits.

As one example, consider three cells of different shapes, but all with the same
capacity V. The cells shown in figure 3 (a), have different heights H,/10, H, and 10H,
(and therefore different interfacial areas 104,, 4, and 4,/10 respectively, where 4, =
V/H;). To make the main point as simply as possible, suppose that the plastic is
effectively infinite (i.e. £in (16) is much less than one) and that the food is well mixed
(i.e. a in (12) is also much less than one). Provided, also, that the one-dimensional
theory discussed above applies, the mass of migrant in the food satisfies (26). The
values of y, d and M = yc, V are the same for each cell, but the three values of H
differ. Note that i appears in the formula (25) for non-dimensional time 7. The three
curves in figure 3 (b) show M /M, for the three cells at the same values of (dt):/y H,,
and hence of real time ¢. The differences are substantial and are due entirely to the

Phil. T'rans. R. Soc. Lond. A (1995)
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well-mixed food

Figure 4. Definition sketch for spherical geometry.

differences in shape. For this geometry the flux of migrant in a cell is, at any time,
the same at all points on the interface. Since the cell of smallest height /10 has the
largest area, equilibrium is reached most quickly in this case.

Many other examples, not (necessarily) involving the simplifying assumptions of
infinite plastic and well mixed food, can be given, with use of the results in (iv), to
illustrate that changes in shape can, on their own, cause large differences in migration
behaviour.

It is valuable briefly to consider shape effects that occur when the package
geometry is not one-dimensional. This is, of course, the normal situation in real life.
Since C and ¢ then depend on three space coordinates x, y, z (components of x) and
t, the simplified version of the mathematical model given in (18) cannot then be used
(except as a practical approximation in some special cases). Instead the full model
equations must be solved. In terms of #, y, z and ¢, the second equation of (5) is

0¢c 0 (.,0c) 0,0\ 0f,0c
o2 = d= = d=
o ax< ©x>+ay( ©y>+az (d©z>’ (30)
and the other equations in (5)—(9) are similarly longer and more complicated than the
simple versions in (18). Computers will normally have to be used.
Some scientific insights can, however, be obtained by considering a spherical
system, sketched schematically in figure 4. (This is actually as relevant to real life as

many of the migration cells used in laboratory tests.) For this case, C' and ¢ can be
expressed as functions of ¢ and r, where

r= (22 +y2+22)" (31)

As shown in figure 4, r is the distance of a point from the centre O of the sphere

containing food. For simplicity, and to facilitate comparisons with the one-

dimensional solutions immediately above, it will again be supposed that the plastic

is effective infinite, that the food is well mixed and that d in (30) is constant.
Equation (3) can then be written

d _dd( e
62— 7‘26;(7’ 5;) (32)

For this case the model equations can be solved analytically. The solution for
M/M , has the form »
M/M,, =F@,v), (33)

where 7 is a non-dimensional time defined by
7 = dt/y*R2. (34)
Phil. Trans. R. Soc. Lond. A (1995)
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It will be noted that # is the natural analogue of the corresponding variable 7, defined
in (25) and used in the one-dimensional solution with the same physics. The function
F in (33) is given by

Fl7) = 1= D) = A1), (35)
(A1 =4,)
where A; and A, are the roots of the quadratic equation
A2—3A+3y =0, (36)
and f(n) = e7exfe (p?). (37)

It will be noted that f is the function appearing in the formula (26) for M /M in the
corresponding one-dimensional case, and this is not a coincidence as will be seen
below.

These formulae illustrate several points that apply to packages in real life.

Equation (33) shows explicitly that M /M depends on y as well as 7, i.e. on two
non-dimensional groups. This is not true for the corresponding one-dimensional
solution as (26) shows. So, for a sphere, M /M, is not determined by the value of %
alone; it is necessary also to know the value of y. This conclusion is not changed if
another non-dimensional time (e.g. dt/R?) is used instead of . For a general package,
the variation of M/M, with non-dimensional time depends also on vy and,
additionally, on the non-dimensional numbers needed to fix its shape, e.g. two aspect
ratios for a cuboid. This statement is illustrated for a special case by table 1 in
appendix A.

It is sometimes implied or assumed (as perhaps in the CEC Directive discussed in
appendix A) that shape does not affect the quantity of migration provided the
volume V and interfacial area 4 are fixed. That this is wrong is shown by an example
in appendix Aj; the results above provide another counter example. The one-
dimensional cell in figure 1 has the same 4 and V as a sphere of radius R provided
its height H is equal to R/3. (In that case, incidentally, 4 = 4nR? = 36mH?, which is
the area of a circle of radius 6H. So if, for example, the one-dimensional cell has a
cylindrical cross section —a common feature of laboratory tests — its shape is also
fixed. In real life, such a constraint could well be commercially unacceptable.) Even
then, M /M, for the same values of d, t and v is different for the sphere of radius R
than for the one-dimensional cell of height R/3; this is clear from the fact that the
formula for a sphere is different from (26). Although calculations suggest that the
difference is not numerically large in this case (e.g. for y = 0.75, M /M, for the sphere
is never more than 14% greater than for the one-dimensional cell, with the
maximum occurring when dt/H? = 9dt/R* ~ 2), the effect will undoubtedly be much
greater for many real packages because of the strong influence of shape parameters
(like aspect ratios for a cuboid).

For y <1, U, <c, and near equilibrium is achieved relatively rapidly by
migration from a layer in the plastic of thickness much less than R. It can then, but
only then, be anticipated that the difference in shape between the sphere and the one-
dimensional cell with the same A and V would be small for all time. It can readily be
verified that (33)—(37) confirm this expectation.

When the food is not well mixed and/or when the plastic is not infinite, the
behaviour of M /M ,, depends also on a and/or B. Again, it is highly unlikely that this
dependence will be shape-invariant.

Phil. Trans. R. Soc. Lond. A (1995)
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(d) Diffusion equation models. Models of Class 111 systems

Katan (1971) (see also Briston & Katan 1974) defined Class III systems as those
where migration is controlled by the food with the implication that it is negligible in
the absence of the food. In practice the most important group in this class is when
the food penetrates the plastic, usually with a change in volume (often called
‘swelling’), and also enables substantial migration to occur (‘leaching’). This class
includes, for example, most additives in most plastics in contact with oily or fatty
foods, or in hydrophilic plastics like nylons in contact with aqueous foods. Recent
experimental evidence from niany sources suggests that penetration is more common
than was anticipated by Katan over 20 years ago.

The first discussions of possible mathematical models of Class IIT systems were
given by Knibbe (1971) and Katan (1971). Both authors postulate a sharp
penetration front (at, say, = b(¢) > 0 with the geometry of figure 1). Rudolph (1979,
1980) uses the same hypothesis and closes the mathematical model by using
concentration-dependent diffusion coefficients. Frisch (1978) gives a complete model
essentially using equations (5) only (plus boundary conditions) with, again,
concentration-dependent diffusion coefficients; there is no separate front in his
model. These models will be discussed fully in a later paper (Lum Wan et al. 1996),
which also proposes a new model of the same type as Frisch’s and includes
comparisons with data.

It is worth noting that, from a mathematical viewpoint, it is natural to use model
equations for Class III systems that include Class I1 systems as a special case since the
division between the two classes is not sharp.

4. Conclusions

At present, mathematical models are not being adequately used in work on
migration. As a result, little or usually no attempt is made to extend or generalize the
results of a single experiment to other systems with either (a) materials with similar
physical properties, or (b) the same materials but different geometries.

Mathematics alone cannot replace measurements; they will always be essential for
proper mathematical modelling. But the other extreme of expecting to make
measurements for every geometry, every set of materials, etc. is also impossible;
sadly, this appears to be prevailing policy.

This paper has shown the power of mathematical models of migration. Recognition
of this power in planning experiments and formulating legislation is overdue.
Mathematicians (including statisticians) should be in the relevant teams. This is the
only way to ensure consumer safety.

Some of this work was done with support from MAFF in the Department of Mathematics and
Statistics at Brunel University. The authors thank Trevor Coomes and John McGuinness of MAFF
for their encouragement and Colin Tripp of Brunel for checking some of the mathematical
formulae.

Appendix A. An example of migration legislation
Directive 90/128 /EEC (CEC 1990) applies to ‘plastics materials and articles and
parts thereof...which, in the finished product state, are intended to come into

contact or are brought into contact with foodstuffs...” (extract from Article 1).
Article 2 of the Directive is:

Phil. Trans. R. Soc. Lond. A (1995)
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‘Plastics materials and articles shall not transfer their constituents to foodstuffs in quantities
exceeding 10 milligrams per square decimetre of surface area of material or article (mg/dm?)
(overall migration limit). However, this limit shall be 60 milligrams of the constituents
released per kilogram of foodstuff (mg/kg) in the following cases:

(@) articles which are containers or are comparable to containers or which can be filled, with
a capacity of not less than 500 millilitres (ml) and not more than 10 litres (1);

(b) articles which can be filled and for which it is impracticable to estimate the surface area
in contact with foodstuffs;

(¢) caps, gaskets, stoppers or similar devices for sealing.’

As explained in Article 3, these provisions on overall (or global) migration are
supplemented by limits on specific migration, i.e. the migration of a single (chemical)
substance from a particular plastic, and §8 of Annex I to 90/128/EEC states that
‘the sum of all specific migration...shall not exceed the overall migration limit’.
Annex II lists those ‘monomers and other starting substances’ that, as from 1
January 19931, ‘may be used for the manufacture of plastics materials and
articles...’.

Article 4 of 90/128/EEC is:

‘The specific migration limits in the list set out in Annex II are expressed in mg/kg. However,
such limits are expressed in mg/dm? in the following cases:

(a) articles which are containers or which can be filled, with a capacity of less than 500 ml
or more than 101;

(b) sheet, film or other materials which cannot be filled or for which it is impracticable to
estimate the relationship between the surface area of such materials and the quantity of
foodstuff in contact therewith.

In these cases, the limits set out in Annex I, expressed in mg/kg shall be divided by the
conventional conversion factor of 6 in order to express them in mg/dm?.’

Annex I is concerned with migration testing procedures. Earlier Directives have
authorized the use of food simulants, instead of the intended actual food, in these
experiments. One such simulant is rectified olive oil. This is a difficult material with
which to do reproducible or repeatable experiments (which, incidentally, suggests
that it was not a wise choice as an authorized simulant). This is recognized in §7 of
Annex I which states that:

‘A material or article that exceeds the overall migration limit by an amount not greater than
the analytical tolerance mentioned below should therefore be deemed to be in compliance with
this Directive.

The following analytical tolerances have been observed:
- 20 mg/kg or 3 mg/dm? in migration tests using rectified olive oil or substitutes,
— 6 mg/kg or 1 mg/dm? in migration tests using the other simulants referred to in Directives
82/711/EEC and 85/572/EEC.’

Thus the overall migration limits of 10 mg dm™2 and 60 mg kg™ in Article 2 of the
Directive (see above) can be increased in practice to 13 mg dm™ and 80 mg kg™*
respectively for rectified olive oil or substitutes, and to 11 mg dm™ and 66 mg kg™*
respectively for other simulants.

It is expected that most readers will immediately recognize from the above
extracts that, in parts, the Directive is scientifically nonsensical. But, obviously, this
has not been apparent to those involved in writing and approving the Directive or,
if apparent, has not been thought important. It is necessary to expose the errors in
the interest of consumer safety.

t From time to time, Annex II is updated by Amendments which involve changes to this date in some
circumstances.

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

e

R
\
\\ \\
P

/

\
{

A

P\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
£\

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Mathematical models of migration 397

It was pointed out some years ago (Chatwin & Katan 1987, pp. 4/1/11-4/6/11)
that migration limits, both overall and specific, should be given in dimensionally
sensible terms. This requirement would be satisfied if all limits were on
concentration(s) of the migrant(s) in the food expressed as mass ratio(s). There is
therefore no a priori objection to a limit of 6 x 107° (60 mg kg™*). What is of course
inexcusable is to assume (as is done throughout the Directive, and as is clear from the
extracts above) that this can be equated to a flux (mass per unit area) of migrant
across that part of the surface area of the package that is in contact with food. The
statement at the end of Article 4 (quoted above in full) that ‘limits expressed in
mg/kg shall be divided by the conventional conversion factor of 6 in order to express
them in mg/dm?’ is absurd.

For example, consider a manufacturer of cubic packages to contain food of the
same density as water (10® kg m=3) who, in compliance with Article 4 of the Directive,
‘converts’ a specific migration limit of say, 6 x 107° (60 mg kg™*) into 1072 kg m™2
(10 mg dm™2). For a cube of side 3 x 1072 m (=>food volume V = 2.7 x 107® m?® = 27 m],
typical, for example, of the quantities in which food flavouring like vanilla essence
is sold to consumers), the total mass of migrant in the food after migration to the
allowed limit has occurred will be (surface area in m?)x102*kgm™?=
6x9x107*x 1072 kg = 5.4 x 107% kg. So, as a mass ratio, the concentration of the mi-
grant in the food is 5.4 x 107% kg/(mass of food in kg) = 5.4 x 107%/(10® x 27 x 107%) =
2x107%. This is 200 mg kg™, different from, and much higher than, the nominal
limit of 60 mg kg™ that provided the manufacturer’s starting point! On the other
hand, if the cubic package has side 3 x 107" m (=V =2.7x 107> m® = 271, i.e. of the
order of magnitude of, say, commercial containers of cooking oil) an analogous
calculation yields a concentration of migrant in the food as 2 x 107% (20 mg kg™).
Only if the cube has side 107 m (1 dm) does the concentration equal the nominal
limit of 6 x 107°.

This illustrative example (and the conclusion would be reached irrespective of
shape, food density or migration limit) confirms the obvious fact that: it is not
possible to ‘convert’ mg kg™! to mg dm 2. Thus Article 4 is potentially dangerous; its
use will permit concentrations far higher than the legal maxima which the Directive
is intended to ensure.

Another serious error in the Directive, but one that is perhaps less obvious because
it is implicit, is the assumption of uniformity, i.e. that conditions are the same at
every point. The Directive presumes that migration from the surface area of a
package occurs at the same rate everywhere on the surface and that it results in a
migrant concentration that is the same everywhere in the food. Neither of these
assumptions is correct even for food (like water) of homogeneous structure. There is
a variation with position that is determined by physics and by the system geometry
in a way that is not easy to predict without the use of calculus and other basic
mathematical techniques. The degree of variation is often likely to be substantial,
even by an order of magnitude or more, especially for foods of strongly heterogeneous
structure like meat or cheese. So the status of the migration limits in the Directive
ought to have been defined as e.g. maxima or averages. And, given the practical
intentions of this Directive, there is a need to state how a maximum, or an average,
limit is to be estimated by experiment, a point of central importance that is not easy
to resolve.

The Directive mentions package size in Articles 2 and 4 (see quoted extracts above)
and the illustrative calculations above show that what is written does not ensure
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Table 1. Values of average migrant concentration given by (A 1)

approximate package
k  dimensions/(102m) C/(mgkg™)

1 79xT9%x7.9 75.6
3 23.8x7.9x%2.6 109.2
5 39.7x79x%x1.6 156.2
10 79.4x7.9x%0.8 279.7

consumer safety. Moreover, no mention is made of an equally important geometrical
feature, namely package shape. Consider, for example, packages containing food of
the same density as water and of capacity 5x 107* m® (500 ml). A cube with this
capacity has internal side [, where I, = (5x107%im ~7.937x 102 m. As an
illustration of the importance of shape, it suffices to consider packages with the same
capacity in the form of a cuboid with internal sides «l,, [,, k™' [, where « is a constant.
It will not change the main conclusion of this paragraph to assume that all faces of
the package are in contact with the food, so that the total surface area across which
migration occurs is

2B(k+1+«1) ~ 1.260 (k+1+x71) x 1072 m?,

With migration across each point of the internal surface area having occurred to the
upper limit of 1072 kg m™? (10 mg dm?) laid down in Avrticle 2 of the Directive (see
above), the average concentration C' of migrant in the food is easily found to be given
b

Y C ~2520(k+1+«1) mgkg™, (A1)
and so depends on «, which determines the precise package shape. Some typical
values given by (A 1) are shown in table 1. Note that:

(i) the minimum value of C' is 75.6 mg kg™' when the package is a cube (x = 1);

(i) for all other values of «, (' is greater than 75.6 mg kg™;

(iii) C tends to infinity as « tends to infinity;

(iv) C is greater than 60 mg kg™ for all k, yet one more example of the
impossibility of converting from mg kg™ to mg dm™2;

(v) since C in (A 1) is an average concentration, the maximum concentration will
be greater.

The conclusion is clear, and independent of the particular shape considered in this
example. Migration limits expressed as mass per unit area without specification of
the package shape do not ensure that any specified concentration of migrant in the
food expressed as a mass ratio is not exceeded.

Lack of scientific rigour apart, some statements in the Directive are unclear. For
example, it is difficult to understand what is meant by (c) of Article 2 (see above).

Appendix B. Some comments on a research paper on migration

A paper by Mercer et al. (1990) deals with the migration of DEHA (di-(2-
ethylhexyl) adipate) plasticizer in cheese. This paper will be denoted by mccé in the
rest of this Appendix. Some corrections to it are given in Mercer ef al. (1991).

In brief, some Cheddar cheese was contaminated with DEHA to a nominally
uniform concentration C,. As a mass ratio, C,, was stated to have the value
1.930 x 1073(1930 mg kg™!). Four cylinders of cheese of internal diameter
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Figure 5. The geometry of the cell used in the experiments reported in Mmcca.
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Figure 6. Data (o) from two experiments at 5 °C (Mcce) with ¢ = 6 d. Adapted without change of

units or relative scaling from figure 1 of Mcca. The solid circles (@) are claimed to be evaluations
of (B1) with D =3x10"m?sin (a) and D =2 x 1073 m?s! in (b). The solid curve is claimed
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to be a graph of (B 1).
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Figure 7. As for figure 6 except that the temperature was 25 °C, t = 4 d, and the values of D were
stated to be 4 x 107 m?s7! in (a) and 1 x 10712 m? 7! in (b). Adapted without change of units or
relative scaling from figure 2 of mMcca.

1.1x1072m and total length 3.8x1072m were formed; contaminated cheese
occupying the central 8 x 1073 m of the cylinder was sandwiched between two
sections of uncontaminated cheese each of length 1.5x 1072 m as shown in figure 5.
Each cylinder of cheese was contained within a glass tube. Two of the cylinders were
maintained at 5 °C for 6 days, and two at 25 °C for 4 days. After storage, portions of
each cylinder of length 1.3 x 1072 m were microtomed at —40 °C into slices of
thickness 2x 107 m, and the DEHA concentrations were determined by gas
chromatography.
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The results for the two experiments at 5 °C are shown in figure 6, and those for
25 °C are shown in figure 7. These figures have been adapted from figures 1 and 2 of
MCCG, but without change of units or relative scaling. While the use of dimensional
units is not to be commended, a worse fault is the use, in each figure, of different
scalings for the duplicate experiments. Easy visual comparison is therefore
impossible. Also shown in each diagram is a ‘theoretical’ curve, claimed in the paper
to be an evaluation of

1y l—x I+
0= f‘/o{“f(m)*“f(m)}’ (B 1)

where [ and x are as shown in figure 5, ¢ is diffusion time and the four different values
of the constant D are given in the figure captions.

Some obvious comments on the data can be made immediately.

1. Given that the relative standard deviation of the gas chromatography method
used to determine DEHA concentrations is only 2 %, the considerable scatter in the
data points must have other cause(s). One possibility is inaccurate microtoming (see
the discussion of another data set in Lum Wan et al. (1996). Another is that the
homogenization process applied to the contaminated cheese was inadequate ; indeed
McoG describes a microscopic examination of contaminated cheese samples that
confirms this. (Given that cheese sold commercially is likely to have a much less
homogeneous structure than the specially prepared samples used in these
experiments, the data provide rather strong evidence in support of the proposal in
§3a of the present paper (see also Chatwin & Katan 1987, 1989) that practically
useful mathematical models of migration will eventually have a large stochastic
component.)

2. It is evident from the figures that the zeros of z do not coincide either with one
another or with the zero of x in equation (B 1), which is the midpoint of the cylinder
of length 8 x 107® m initially containing all the DEHA. The practical difficulty of
locating x = 0 absolutely is understandable with the microtoming procedure used,
but the failure to refer to it is not.

3. Another shortcoming is the relative paucity of measurements, in at least three
of the diagrams, in the region where the concentration is changing most rapidly.

MCOG states that ‘ For the sample geometry used in the migration experiments the
solution of Fick’s second law of diffusion (Crank 1975) given in equation (B 1) was
applicable’. Leaving aside the points that a ‘law’ does not have a ‘solution’, and
that no evidence is given to support the assumption, made categorically, that
migration in the experiments is governed by the diffusion equation

AC /ot = D 0/ da, (B 2)

of which (B 1) is an elementary solution, there is no recognition that (B 1) applies to
the sample geometry only if the initially uncontaminated cheese cylinders of length
1.5x107* m can be regarded as effectively infinite, i.e. if 24/(Dt) < 1.5x 1072 m.
Fortunately this condition turns out to be satisfied for the data shown in figure 6 and,
probably, for figure 7; otherwise another elementary formula can easily be obtained
(and is given, for example, on p. 16 of Crank’s book).

It will also be immediately apparent that there are several elementary but serious
errors in the ‘theoretical’ curves in figures 6 and 7, i.e. in the numerical evaluation
and use of (B 1) by mcca. Among these are:

1. The second point to the right of the ordinate in figure 7a, for x ~ —0.05 cm, is
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clearly wrong since the curve obtained from (B 1) must be smooth. Closer inspection
shows that other points are also wrong, although the errors are of smaller magnitude.

2. In general, the ‘theoretical’ curves drawn by mcca do not go through all their
calculated points, and not only because some points are wrong (see figure 6b).

3. Also, and related to the point made above about x = 0, the graph of (' versus
x given by (B 1) is symmetric about x =0 (and therefore, in particular, flat at
x = 0), which is totally different from the behaviour of the so-called ‘theoretical’
curves shown in both diagrams in figure 7.

4. mcca claims that the values of D given in the figure captions were found by
varying this constant until the ‘best visual fit” was obtained. This is a proper practice
but it was clearly not accomplished for either of the two diagrams in figure 7.

5. Nor did MccG recognize that if (B 2) is an appropriate model, the value of D
must be the same for each of the two experiments in figure 6 and for each of the two
experiments in figure 7 (albeit higher in the latter because of the increase in
temperature).

6. Finally, Mmcce state without explanation that the ‘mean’ diffusion coefficients
were estimated to be 1.5 x 1072 m? st at 5 °C and 2.0 x 10712 m? s7! at 25 °C, values
that are in neither case the average of the two values given in the figure captions.

Each of these errors is so fundamental that those quantitative conclusions given
by Mcoa that are supposedly based on (B 1) can have no validity whatsoever.

However it is possible to demonstrate that proper use of (B1) with mcca’s data
can lead to valid conclusions, despite the shortcomings in the data summarized
above. Consider first the data from the two experiments in figure 6, and hypothesize
that (B 2) describes the DEHA migration.

The following procedures were applied.

(i) Data were transcribed from the graphs by using a ruler (thereby inducing
errors of much smaller magnitude than the existing scatter). The results are given in
columns (1), (2), (5) and (6) of table 2.

(ii) It is reasonable to suppose from inspection of the data that DEHA has not yet
migrated measurably in either case from the centre of the contaminated cheese and
that, therefore, the points nearest the ordinate correspond to C,, the initial
concentration of DEHA. Some points, indicated by crosses in table 2, appear to be
outliers and were henceforth rejected. The averages of the ticked points were taken
as the values of C; for the two experiments. (Notice that the average of 1.992 kg m™
and 1.880 kg m™2 is 1.936 kg m~3, close to the nominal C;, of 1.930 kg m~®,1 and that
differences of C, between otherwise duplicate experiments are to be expected and
cause no difficulty in the application of (B 2) since this is a linear equation.) The two
C/C, columns (3) and (7) in table 2 were then obtained.

(iii) As shown in figure 8, the data from the two experiments appear consistent
(within experimental error) with their being obtained from a single experiment
provided the origin in figure 6 (b) is moved about 1 x 1073 m to the right. This step
is justified because absolute positions could not be located precisely in this
experiment as noted above.

(iv) For the same reason it is necessary to estimate the initial position of the doped
cheese in relation to the axes used in figure 8. Assume for the moment that (B 1) is
the appropriate solution of (B 2). It follows, because it has also been supposed — see

+ Mcoe assumes without comment that a concentration of 1930 mg kg™ is the same as one of 1.930 kg m™3,

i.e. that the cheese has density 10° kg m™, the same as water.
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Figure 8. The consolidated data set obtained as explained in the text from the data in both
diagrams of figure 6 (columns (3), (4), (7) and (8) of table 2). Data from 6(a): x, 6(b): @.

Table 2. Data from figure 1 of Mece (figure 6 of present paper)

(X, Rejected outliers; v/, values used to calculate, C. Column (4): x = »,+1.15%x 1073 m;
column (8): x = 2,+0.15x 107® m.)

(1) (2) (3) (4) (5) (6) (7) (8)

C/(kgm™®) x,/103m C/C; x/10% m C/(kgm™) «,/10°m C/C, /103 m
(@) v/ 1.80 020 090 135 (b) X 1.30 0271  —  —
VvV 2.18 0.40 1.09 1.55 Vv 1.74 0.52 0.93 0.67
V4 1.90 0.80 0.95 1.95 X 1.40 0.71 — —
Vv 2.06 1.00 1.03 2.15 Vv 1.87 0.83 0.99 0.98
V4 1.98 1.20 0.99 2.35 Vv 1.82 1.00 0.97 1.15
X 2.45 1.40 — — VvV 1.94 1.17 1.03 1.32
VvV 2.03 1.60 1.02 2.75 X 1.50 1.27 — -
1.96 2.00 0.98 3.15 Vv 1.97 1.39 1.05 1.54
1.82 2.20 0.91 3.35 Vv 1.83 1.52 0.97 1.67
1.92 2.40 0.96 3.55 X 1.46 1.65 — —
X 0.66 2.60 — — V4 1.71 1.80 0.91 1.95
1.07 2.75 0.54 3.90 Vv 1.96 1.85 1.04 2.00
0.64 3.00 0.32 4.15 VvV 1.94 1.99 1.03 2.14
0.36 3.20 0.18 4.35 X 0.97 2.07 — —
0.24 3.40 0.12 4.55 Vv 2.02 2.08 1.07 2.23
0.12 3.60 0.06 4.75 1.86 2.28 0.99 243
0.06 3.80 0.03 4.95 1.63 2.51 0.87 2.66
0.02 4.00 0.01 5.15 1.76 2.72 0.94 2.87
1.65 2.95 0.88 3.10
1.55 3.10 0.82 3.25
1.49 3.30 0.79 3.45
1.37 3.51 0.73 3.66
1.07 3.71 0.57 3.86
0.80 3.89 0.43 4.04
0.02 5.52 0.01 5.66

(@) Cy=1.992 kg m=3; (b) C, = 1.880 kg m™3.
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Figure 9. Fits of (B 1) to data in figure 8 with £ = 2/2(Dt)? and D = (a) 1.57 x 107 m? s, (b)
2.14 x 1073 m? g7t (¢) 3.09 x 10713 m? §71,

(ii) above —that DEHA has not yet migrated in measurable quantities from the
centre, that the value of C/C, is essentially 1 where x =+ =+4x10"%m, i.e. at
either end of the initial cylinder of doped cheese (see figure 5). Visual inspection of
figure 8 then shows that its origin has to be moved about 1.15x 1073 m to the left.

(v) These steps lead to a single table of C'/C, versus x, where, following step (iv),
x =0 is (within experimental error) at the centre of the initially contaminated
cheese. This table comprises columns (3) and (7) — for C/C, — and (4) and (8) — for x
of table 2.

(vi) Only now can a sensible attempt be made to apply (B 1) to the data. Figure
9 shows the fit between (B 1) and the consolidated data set for three different values
of the constant diffusion coefficient D. It is claimed that the quality of fit in all three
graphs is better than that obtained by mcce and shown in figure 6. The quality of
fit is good enough to assert that (B 2) is a satisfactory mathematical model. Since the
best of the three fits is (b), it can also be tentatively concluded that D is of order
2x 10713 m? s but the scatter in, and the limited number of, data points are such
that this estimate could turn out to be substantially in error.

With this value of D and with { = 6 d = 5.184 x 10° s, the half thickness of the two
layers (one at each end of the initial cylinder containing contaminated cheese) over
which migration has occurred is of order 44/ (Dt) ~ 1.3 x 1072 m. That this is much
less than the lengths of any of the cheese cylinders confirms the consistency of the
above working.
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Figure 10. Fits of (B 1) to data in figure 7. Data from 7(a) x, from 7(b) @. D =

(@) 4.63x 1072 m? 571, (b) 7.23x 107 m2 57, (c) 1.29 x 10712 m? s71,

Consider now the data in figure 7. Suppose first that (B 2) is still a satisfactory
mathematical model, and that (B 1) is the appropriate solution. A problem arises
almost immediately. The maximum concentration in both diagrams of figure 7 is
about 1.35 kg m™®, substantially below the nominal (, which is stated to be about
1.93 kg m™3. For x =0, (B 1) gives

1.35 ~ 1.93 erf{l/2+/ (Dt)}. (B 3)

With | =4x10"2m and ¢t =4 d = 3.456 x 10° s, this gives D ~2.16 x 107! m?® 7!
with use of a table of the error function. According to (B 1), the half thickness of the
migration layer is then of order I4+4+/(Dt) ~ 1.5x1072m. This is, however,
substantially greater than the data show, so there is a contradiction. It is easy to
show that the contradiction persists if (B 1) is replaced by the solution of (B 2) for a
finite cylinder that was referred to earlier and is quoted on p. 16 of Crank (1975).
Unless either the mathematical model (B 2) or both data sets in figure 7 are to be
rejected entirely, there is one other possibility. This is that, for these data sets, the
value of ( is of order 1.35 kg m™, and that Mcce have omitted mention of this
distinction between figures 6 and 7. When this assumption was made, the procedure
described above was applied to the data sets in figure 7 (rejecting only one point as
an outlier from the bottom diagram). The comparisons with (B 1) are shown in figure
10 for three values of D. The agreement between the data and (B 1) is reasonable, but
perhaps not quite as good as in figure 9. (The agreement is much better than that
shown by Mcca.) An estimate for D is that it is of order 1 x 1072 m? 7!, the average
of the values used in figure 10(b), (¢). This estimate is one-twentieth of the value
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obtained by using the inconsistent (B 3). Note also that D ~ 1072 m?s7! gives a

migration layer with half thickness of order 2.4 x 107® m, consistent with the data

and small enough to ensure that (B 1) is the appropriate solution of (B 2).
According to standard Arrhenius theory, D depends on absolute temperature 7'

according to
D =D_exp(—E/RT), (B4)

where £ is the activation energy per mole, R & 8.31 J K™ mol ™! is the gas constant,
and D is a constant. With the above estimates of D & 2x 107 m? s at 7' = 278 K
andD =~ 1072 m?stat 7 =298 K, D and & in (B 4) are found to be approximately
52x107* m?s™ ! and 5.6 x 10* J mol~*. The latter value is of the same order as those
quoted by Moisan (1980) for some stabilizers in LDPE.

The data analysis has shown up further shortcomings in the experimental design.
Given the inability of the data published in Mmcca to determine D with precision, the
periods allowed for migration should have been lengthened in each experiment. Had
more samples been prepared, results for a range of migration times could have been
collected. It is also curious that the microtomed samples were taken only from one
side (x > 0 in figure 5) of the composite cheese cylinders when twice as much data
could have been obtained by microtoming samples from both sides of the centre. As
the experiments were conducted, there was never any need for the left cylinder of
uncontaminated cheese in figure 5.

References

Barnett, V. & Lewis, T. 1984 Outliers in statistical data, 2nd edn. John Wiley.

Batchelor, G. K. 1967 An introduction to fluid dynamics. Cambridge University Press.

Briston, J. H. & Katan, L. L. 1974 Plastics in contact with food. London: Food Trade Press Ltd.
Carslaw, H. S. & Jaeger, J. C. 1959 Conduction of heat in solids, 2nd edn. Oxford University Press.

Chatwin, P.C. 1991 Statistical methods for assessing hazards due to dispersing gases.
Environmetrics 1, 143-162.

Chatwin, P. C. & Katan, L. L. 1987 Predictive models of migration for legislative purposes. Brunel
Univ. Dept Math. Stats tech. Rep. TR [14/87.

Chatwin, P. C. & Katan, L. L. 1989 The role of mathematics and physics in migration predictions.
Packaging Tech. Sci. 2, 75-84.

Chatwin, P. C. & Sullivan, P. J. 1990 Cloud-average concentration statistics. Math. Comp. Simul.
32, 49-57. '

CEC 1990 Official Journal of the EEC, no. L. 75 (21 March 1990). (See Corrigenda in Official Journal
of the EEC, no. L 349 (13 December 1990).)

Crank, J. 1975 The mathematics of diffusion, 2nd edn. Oxford University Press.

Frisch, H. L. 1978 Simultaneous nonlinear diffusion of a solvent and organic penetrant in a
polymer. J. Polymer Sci (Polymer Phys. Ed.) 16, 1651-1664.

Garlanda, T. & Masoero, M. 1966 Considerazioni sulla migrazione di componenti di materie
plastiche in solventi a contatto. Chim. Ind. 48, 936-943.

Haesen, G., le Goff, B. & Karcher, W. 1984 Reproducibility aspects in specific migration
measurements: a collaborative study. Fd Add. Contam. 1, 53-61.

Katan, L. L. 1971 Migration from packaging materials to foodstuffs: a new approach. In Food
packaging and health: migration and legislation, pp. 2.1-2.35. London: The Institute of
Packaging.

Katan, L. L. 1979 Migration units and dimensions. Plastics Rubber Mat. Applic. 4, 18-24.

Katan, L. L. 1992 Multiplicity of migrants. Nature, Lond. 358, 183.

Knibbe, D. E. 1971 Theory of extraction of additives from plastics by swelling solvents. Plastica
24, 358-363.

“y

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

A
/, A
4 N

J (

Py

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A

i \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

406 J. A. Lum Wan, P. C. Chatwin and L. L. Katan

Lum Wan, J. A., Chatwin, P. C. & Katan, L. L. 1996 Migration from plastic packages into their
contents. II. A mathematical model for Class III systems. (In preparation.)

Mercer, A., Castle, L., Comyn, J. & Gilbert, J. 1990 Evaluation of a predictive mathematical
model of di-(2-ethylhexyl) adipate plasticizer migration from PVC film into foods. Fd Add. &
Contam. 7, 497-507.

Mercer, A., Castle, L., Comyn, J. & Gilbert, J. 1991 Corrigendum — authors’ correction. Fd Add.
Contam. 8, 125.

Moisan, J. Y. 1980 Determination of diffusion parameters for some stabilisers in a low density
polyethylene. Eur. Polymer J. 16, 979-992.

Reid, R. C., Schwope, A. D. & Sidman, K. R. 1983 Modelling the migration of additives from
polymer films and food simulating liquids. In Proc. 4th int. Symp. Migration, Hamburg, pp.
105-156. Hamburg: Unilever.

Reid, R. C., Sidman, K. R., Schwope, A. D. & Till, D. E. 1980 Loss of adjuvants from polymer
films to foods or food simulants. Effect of the external phase. Ind. Engng Chem. Prod. Res. Dev.
19, 580-587.

Rudolph, F.B. 1979 Diffusion in a multicomponent inhomogeneous system with moving
boundaries. I. Swelling at constant volume. J. Polymer Sci. (Polymer Phys. Edn) 17, 1709-1718.

Rudolph, F. B. 1980 Diffusion in a multicomponent inhomogeneous multiphase system with
moving boundaries. II. Increasing or decreasing volume (swelling or drying). J. Polymer Sci.
(Polym. Phys. Edn) 18, 2323-2336.

Sanchez, I. C., Chang, S. S. & Smith, L. E. 1980 Migration models for polymer additives. Polymer
News 6, 249-256.

Schwope, A. D., Till, D. E., Ehntholt, D. J., Sidman, K. R., Whelan, R. H., Schwartz, P.S. &
Reid, R. C. 1987 Migration of BHT and Irganox 1010 from low-density polyethylene (LDPE)
to foods and food simulating liquids. Fd Chem. Toxicol. 25, 317-326.

Till, D. E., Reid, R. C., Schwartz, P. S., Sidman, K. R., Valentine, J. R. & Whelan, R. H. 1982a
Plasticizer migration from polyvinyl chloride film to solvents and foods. F'd Chem. Toxicol. 20,
95-104.

Till, D. E., Ehntholt, D. J., Rejd, R. C., Schwartz, P. 8., Schwope, A. D., Sidman, K. R. & Whelan,
R.H. 198256 Migration of styrene monomer from crystal polystyrene to foods and food
simulating liquids. Ind. Engng Chem. Fundam. 21, 161-168.

Received 5 November 1992 ; accepted 23 July 1993

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

